Robust Visual Robot Localization Across Seasons Using Network Flows

نویسندگان

  • Tayyab Naseer
  • Luciano Spinello
  • Wolfram Burgard
  • Cyrill Stachniss
چکیده

Image-based localization is an important problem in robotics and an integral part of visual mapping and navigation systems. An approach to robustly match images to previously recorded ones must be able to cope with seasonal changes especially when it is supposed to work reliably over long periods of time. In this paper, we present a novel approach to visual localization of mobile robots in outdoor environments, which is able to deal with substantial seasonal changes. We formulate image matching as a minimum cost flow problem in a data association graph to effectively exploit sequence information. This allows us to deal with non-matching image sequences that result from temporal occlusions or from visiting new places. We present extensive experimental evaluations under substantial seasonal changes. Our approach achieves accurate matching across seasons and outperforms existing state-of-the-art methods such as FABMAP2 and SeqSLAM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

Visual Localization across Seasons Using Sequence Matching Based on Multi-Feature Combination †

Visual localization is widely used in autonomous navigation system and Advanced Driver Assistance Systems (ADAS). However, visual-based localization in seasonal changing situations is one of the most challenging topics in computer vision and the intelligent vehicle community. The difficulty of this task is related to the strong appearance changes that occur in scenes due to weather or season ch...

متن کامل

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

Localization of Mobile Robot Based on Fusion of Artificial Landmark and RF TDOA Distance under Indoor Sensor Network

In this paper, we propose a robust and real‐time localization method for dynamic environments based on a sensor network; the method combines landmark image information obtained from an ordinary camera and distance information obtained from sensor nodes in an indoor environment. The sensor network provides an effective method for a mobile robot to adapt to changes and gu...

متن کامل

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014